Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes
نویسندگان
چکیده
منابع مشابه
Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes
Given a bivariate function f defined in a rectangular domain Ω, we approximate it by a C1 quadratic spline quasi-interpolant (QI) and we take partial derivatives of this QI as approximations to those of f. We give error estimates and asymptotic expansions for these approximations. We also propose a simple algorithm for the determination of stationary points, illustrated by a numerical example. ...
متن کاملQuadratic Spline Quasi - Interpolants on Bounded Domains
We study some C1 quadratic spline quasi-interpolants on bounded domains ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...
متن کاملQuadratic spline quasi-interpolants and collocation methods
Univariate and multivariate quadratic spline quasi-interpolants provide interesting approximation formulas for derivatives of approximated functions that can be very accurate at some points thanks to the superconvergence properties of these operators. Moreover, they also give rise to good global approximations of derivatives on the whole domain of definition. From these results, some collocatio...
متن کاملQuadratic spline quasi-interpolants on Powell-Sabin partitions
In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.
متن کاملNear minimally normed spline quasi-interpolants on uniform partitions
Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Computers in Simulation
سال: 2008
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2007.08.021